2016

Which one of the following sets of titres indicates a systematic error if the actual volume being measured is 85.2 mL?

- (a) 85.1 mL, 85.1 mL, 85.3 mL, 85.5 mL
- (b) 65.2 mL, 75.2 mL, 85.2 mL, 95.2 mL
- (c) 85.2 mL, 85.3 mL, 85.1 mL, 85.1 mL
- (d) 87.3 mL, 86.9 mL, 89.1 mL, 88.2 mL

2016

- 7. In an acid-base titration, which of the following is **least** likely to cause an error in the calculated concentration?
 - (a) using a funnel in the burette and leaving it in the same place for each titration
 - (b) measuring the volume at the bottom of the meniscus
 - (c) each member of the experimental team taking turns to measure the burette
 - (d) rinsing the burette with distilled water before the titration

2016

- 9. How many moles of a diprotic acid would be required to neutralise 1 mole of sodium hydroxide?
 - (a) 0.5
 - (b) 1.0
 - (c) 1.5
 - (d) 2.0

2016

- 10. Which one of the following represents a conjugate acid-base pair?
 - (a) N3-/CN-
 - (b) NH₃/NH₂-
 - (c) CH₂CH₂OH/CH₂CHO
 - (d) H₃PO₄/PO₃-

2016

Which of the following equations **best** represents the self-ionisation of water according to the Brønsted-Lowry model?

- OH-(aq) (a) $H_2O(\ell)$ H⁺(aq) $H_2O(\ell)$ H₃O⁺(aq) (b) OH-(aq) H¸O⁺(aq) 2 H,O(l) (c) ₩ 2 OH-(aq) (d) 2 H₂O(l) H₃O⁺(aq) OH-(aq)
- **CHEMISTRY**

6

2016

The **best** definition of the equivalence point in an acid-base titration is the point at which the

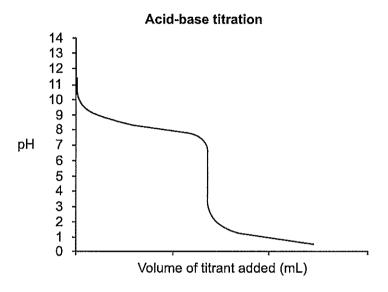
- (a) indicator changes colour.
- (b) volume of acid equals the volume of base.
- (c) pH of the solution is 7.
- (d) mole ratio of acid to base is equal to their stoichiometric ratio.

(6 marks)

(a) Select **one** basic, **one** acidic and **one** neutral salt from the list below to complete the table. (3 marks)

KCN, $\mathrm{NH_4C\ell},\,\mathrm{Mg_3(PO_4)_2},\,\mathrm{NaNO_3},\,\mathrm{KHCO_3},\,\mathrm{NaCH_3COO},\,\mathrm{KC}\ell$

Acidic salt	Neutral salt	Basic salt


(b)	Use the Brønsted-Lowry model to explain why the pH of ammonia solution is greater than 7.0 at 25 °C. Incorporate at least one appropriate equation in your answer. (3 marks

	A buffer of carbonic acid (H ₂ CO ₃)/hydrogencarbonate (HCO ₃ -) is present in to maintain a pH between 7.35 and 7.45. Write an equation to show the represent in a carbonic acid/hydrogencarbonate buffer solution. Explain why 300.0 mL of 1.00 mol L ⁻¹ carbonic acid/hydrogencarbonate bechange in pH significantly when 3 drops of 1.00 mol L ⁻¹ HCℓ are added to 3 drop	(2 n			
chang 3 drop	ge in pH significar as of 1.00 mol L ⁻¹	ntly when 3 drop	s of 1.00 mol L ⁻¹	HCl are added to	it, yet whe

18

The data below were collected from an acid-base titration.

(a) Label the equivalence point on the titration curve below using an arrow and record the pH value at this point. (2 marks)

pH value at equivalence point:

(b) Select an indicator from the table below that would be **best** for this titration and justify your choice. (4 marks)

Indicator	Low pH colour	Transition pH range	High pH colour
Methyl Yellow	red	2.1 – 3.3	yellow
Bromocresol Green	yellow	3.8 – 5.4	blue
Bromothymol Blue	yellow	6.0 – 7.6	blue
Phenolphthalein	colourless	8.3 – 10.0	pink
Alzarine Yellow R	yellow	10.2 – 12.0	red

Indicator:		
luotifications		
Justification:	***************************************	

See next page

(a)

(26 marks)

Acid rain is a significant issue in many industrialised areas of the world; particularly around power stations using fossil fuels. Legislation has been developed in Australia to minimise the formation of sulfur dioxide, $SO_2(g)$, such as from the use of low-sulfur fuels in automobiles, which can cause acid rain. Normal rain has a pH of about 5.6; it is slightly acidic because carbon dioxide, $CO_2(g)$ dissolves into it, forming weak carbonic acid. Rain with a pH less than 4.4 is usually classified as acid rain.

Testing was carried out on a rainwater sample taken near a coal-fired power station by titration, using sodium hydroxide solution, NaOH(aq). Standardisation of the sodium hydroxide solution was carried out before it was used in the titration. An anhydrous sodium carbonate, Na₂CO₃(s), primary standard was used to standardise a hydrochloric acid solution, HCℓ(aq) and subsequently used to standardise the NaOH(aq) solution.

Sodium carbonate, $Na_2CO_3(s)$ was heated at 110 °C in a drying oven for 1 hour before 6.08 x 10^{-4} g was dissolved in distilled water to make 2.00 L of the primary standard. Three 25.0 mL aliquots of HCl(aq) were titrated and an average titre of 16.4 mL was required for neutralisation.

Demonstrate, by means of calculation, that the concentration of HCl(aq) solution is

3.76 x 10 ⁻⁶ mol L ⁻¹ .	(5 marks
Outline two reasons why sodium hydroxide, NaOH(s) is not a suitat for this titration.	ole primary standard (2 marks
One:	
Two:	
I/M/C):	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

An average titre of 21.3 mL of the standardised (3.76 x 10^{-6} mol L⁻¹) HCl(aq) solution was required to neutralise 25.0 mL aliquots of NaOH(aq) solution.

:)	Calculate the concentration of the NaOH(aq) solution.	(3 marks)

The standardised NaOH(aq) solution was then used for the titration of a rainwater sample. A 100.0 mL sample of rain water was collected near a coal-fired power station and diluted to 250.0 mL with distilled water in a volumetric flask. 25.0 mL aliquots of the diluted rainwater were used in the titration.

(d) Complete the table below to state with what the following pieces of glassware should be rinsed for this titration. (3 marks)

Glassware	Final rinse
Burette	
Conical flask	
Pipette	

The titre values obtained for the rainwater sample are shown in the table below:

Titre volume of NaOH (mL)				Average titre
Trial 1	Trial 2	Trial 3	Trial 4	volume (mL)
21.81	19.64	19.67	19.66	

(e) Calculate the average titre volume and record it in the table above. (1 mark)

CHEMISTRY	
2016	
Question 42	(continued)

(f)

(g)

36

if carbon dioxide	, $\mathrm{CO}_2(\mathrm{g})$ alone accounts for rain with a pH of 5.60, then dioxide. SO.(a) at 16.0 °C and 97.2 kPa, that would also	calculate the
dissolved to prod	, $CO_2(g)$ alone accounts for rain with a pH of 5.60, then dioxide, $SO_2(g)$ at 16.0 °C and 97.2 kPa, that would also luce 0.100 L of an acid rain sample with a pH of 4.0. Using the contraction of the	calculate the o need to be e the equation
If carbon dioxide volume of sulfur dissolved to prod below.	, $CO_2(g)$ alone accounts for rain with a pH of 5.60, then dioxide, $SO_2(g)$ at 16.0 °C and 97.2 kPa, that would also luce 0.100 L of an acid rain sample with a pH of 4.0. Using $SO_2(g) + H_2O(\ell) \Rightarrow H_2SO_3(aq)$	calculate the o need to be e the equation
dissolved to prod below.	luce 0.100 L of an acid rain sample with a pH of 4.0. Us	calculate the o need to be e the equation (6 mar
dissolved to prod below.	luce 0.100 L of an acid rain sample with a pH of 4.0. Usi $SO_2(g) + H_2O(\ell) \Rightarrow H_2SO_3(aq)$	e the equation
dissolved to prod below.	luce 0.100 L of an acid rain sample with a pH of 4.0. Usi $SO_2(g) + H_2O(\ell) \Rightarrow H_2SO_3(aq)$	e the equation
dissolved to prod below.	luce 0.100 L of an acid rain sample with a pH of 4.0. Usi $SO_2(g) + H_2O(\ell) \Rightarrow H_2SO_3(aq)$	e the equation
dissolved to prod below.	luce 0.100 L of an acid rain sample with a pH of 4.0. Usi $SO_2(g) + H_2O(\ell) \Rightarrow H_2SO_3(aq)$	e the equation
dissolved to prod below.	luce 0.100 L of an acid rain sample with a pH of 4.0. Usi $SO_2(g) + H_2O(\ell) \Rightarrow H_2SO_3(aq)$	e the equation
dissolved to prod below.	luce 0.100 L of an acid rain sample with a pH of 4.0. Usi $SO_2(g) + H_2O(\ell) \Rightarrow H_2SO_3(aq)$	e the equation
dissolved to prod below.	luce 0.100 L of an acid rain sample with a pH of 4.0. Usi $SO_2(g) + H_2O(\ell) \Rightarrow H_2SO_3(aq)$	e the equation

DO NOT

Which one of the following pairs contains a strong acid and a weak acid?

- HCl and NaOH (a)
- MgCO₃ and CH₃COOH (b)
- (c) NH₃ and KOH
- HNO, and H,CO, (d)

5 **CHEMISTRY**

2017

8. The indicator HIn is used in a titration between hydrochloric acid and magnesium hydroxide solutions. The following equation represents how the indicator works.

$$HIn(aq) \Leftrightarrow H^{+}(aq) + In^{-}(aq)$$

green purple

The indicator is added to 20.0 mL of magnesium hydroxide solution in a conical flask and the hydrochloric acid is added via a burette until the end point is observed. The acidic and basic solutions are of similar concentrations and the flask is swirled continuously as the acid is added.

Which one of the following statements describes the expected observations for the colour of the solution in the conical flask?

- (a) The solution starts green and turns purple after the addition of approximately 10 mL.
- The solution starts green and turns purple after the addition of approximately (b) 40 mL.
- The solution starts purple and turns green after the addition of approximately (c)
- (d) The solution starts purple and turns green after the addition of approximately 40 mL.

2017

The acidification of oceans due to their increased concentrations of carbon dioxide decreases the rate and amount of calcification in some marine organisms, e.g. shellfish and coral reefs.

Which one of the following equations best represents the chemistry involved in decreasing the rate and amount of calcification?

(b) CO₂ + H₂O + CO₂²
$$\rightarrow$$
 2 HCO₂-

(c)
$$4 H^{+} + 2 CO_{3}^{2-} \rightarrow H_{2}CO_{3} + H_{2}O + CO_{2}$$

(d)
$$CO_2 + Ca(OH)_2 \rightarrow CaCO_2 + H_2O$$

DO NOT WRITE IN TH

DO NOT WRITE IN THIS AREA AS IT WILL BE CUT OFF

	aker 12.00 mL of 0.0334 mol L ⁻¹ sulfuric acid solution, H_2SO_4 (aq), is added to 32 mol L ⁻¹ potassium hydroxide solution, KOH(aq).	.50 mL of
(a)	Identify the limiting reagent in this reaction. Show all workings.	(5 marks)

)	Calculate the final concentration of the excess reagent. Show all workings.	(3 marks)
:)	Calculate the pH of the final solution. Show all workings.	(2 marks)

CHEMISTRY
2017
Question 31

16

(8 marks)

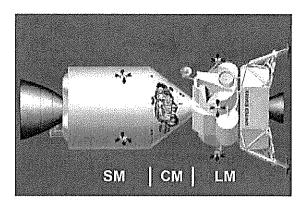
Water	r is capable of self-ionisation.	
(a)	Write an equation for the self-ionisation of water.	(2 marks)
(b)	Write the equilibrium constant expression for the self-ionisation of water.	(1 mark)
(0)	The equilibrium constant for the self-injection of water K is 1.00 v 10:14 et 25	
(c)	The equilibrium constant for the self-ionisation of water K_w is 1.00 x 10 ⁻¹⁴ at 25 does this value indicate about this reaction?	(1 mark)

The K values for the self-ionisation of water at 100.0 kPa are given here for a number of different temperatures.

Temperature (°C)	K value
0	0.114 x 10 ⁻¹⁴
25	1.00 x 10 ⁻¹⁴
50	5.48 x 10 ⁻¹⁴
75	19.9 x 10 ⁻¹⁴
100	51.3 x 10 ⁻¹⁴

(d)	Calculate the pH of water at 50 °C.	(2 marks)	

(e)	Is water acidic, basic or neutral at 50 °C? State a reason for your answer.	(2 marks)


In 1971, the seventh manned Apollo mission, Apollo 13, was launched and expected to land on the moon. Two days into the mission, one of the oxygen tanks exploded. The mission was aborted, but in order for the spacecraft to return to Earth safely, many problems needed to be

The spacecraft consisted of three sections:

solved. A number of them involved chemistry.

- the Service Module (SM)
- the Command Module (CM)
- the Lunar Module (LM).

(a)

The Lunar Module was designed to hold two astronauts for the short trip between lunar orbit and the moon's surface. On the trip back to Earth, the astronauts were required to spend more time than expected in the lunar module.

One of the problems encountered was how to remove the carbon dioxide breathed out by the astronauts from the atmosphere in the spacecraft. This was done by reacting it with lithium hydroxide, which was housed in canisters.

Write an equation for the reaction between carbon dioxide gas and lithium hydroxide to

	form lithium carbonate and water.	(2 marks)
	<u></u>	
(b)	A typical lithium hydroxide canister contains 750.0 g of lithium hydroxide. Whe carbon dioxide would be required to react completely with the lithium hydrox canister?	nat mass of ide in each (3 marks)

(c)

DO NOT WRITE IN THIS AREA AS IT WILL BE CUT OFF

On returning to Earth, a partially-used canister was analysed to determine the percentage of lithium hydroxide remaining.

A 12.33 g sample of the canister contents was dissolved in distilled water and sufficient barium nitrate solution was added to precipitate the carbonate ions. The solution was filtered and transferred to a 500.00 mL volumetric flask, which was then filled to the mark. 20.00 mL aliquots of the solution were transferred to conical flasks and titrated against a standardised 0.116 mol L-1 solution of hydrochloric acid.

The following results were obtained from the titrations.

Volume (mL)	1	2	3	4
Final Volume	18.55	34.90	18.50	34.85
Initial Volume	1.50	18.55	2.20	18.50
Titre				

Complete the results table above and calculate the percentage of lithium hydremaining in the canister.	(6 marks)

CHEMISTRY 2017 Question 37 (continued)

(d) From the list of indicators given below, identify **two** that could be used in the titration between lithium hydroxide and hydrochloric acid. Explain why both indicators are appropriate choices for this titration. (4 marks)

Indicator	Low pH colour	Transition pH range	High pH colour
Methyl violet	yellow	0.0 – 1.6	blue
Bromothymol blue	yellow	6.0 – 7.6	blue
Phenolphthalein	colourless	8.3 – 10.0	pink
Thymolphthalein	colourless	9.4 – 10.6	blue

Indicator one:	
Indicator two:	
Explanation:	

2018

An acid-base indicator is red in acid, green in base and yellow in neutral solutions. The indicator was originally in sodium hydroxide solution and excess nitric acid was added dropwise. Which of the following shows the order of colour that would be shown by the indicator?

- (a) red only
- (b) yellow, green, red
- (c) green, yellow, red
- (d) yellow, red

2018

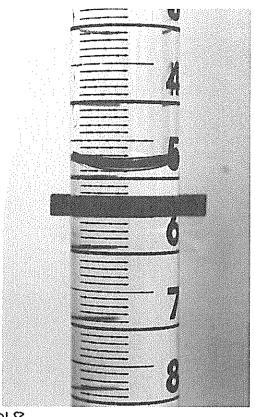
Which of the following solutions has the greatest electrical conductivity?

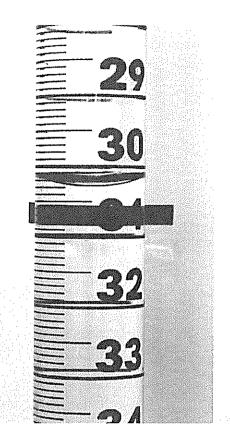
(a)	0.010 mol L-1 methanoic acid, HCOOH(aq)	$(K_a = 1.8 \times 10^{-4})$
(b)	0.100 mol L ⁻¹ methanoic acid, HCOOH(ag)	(K੍ਰੈ = 1.8 x 10⁴)
(c)	0.010 mol L-1 hypochlorous acid, HClO(aq)	$(K_1^8 = 3.5 \times 10^{-8})$
(d)	0.100 mol L-1 hypochlorous acid, HC(O(ag)	$(K^{5} = 3.5 \times 10^{-8})$

See next page

5

CHEMISTRY


2018


Consider the hydrolysis equation below.

$$CH_3NH_2(aq) + H_2O(\ell) \rightleftharpoons CH_3NH_3^+(aq) + OH^-(aq)$$

Which of the following are conjugate acid-base pairs?

- (i) CH₃NH₂ and H₂O
- (ii) CH₃NH₂ and CH₃NH₃+
- (iii) H₂O and OH-
- (iv) CH₃NH₃+and OH-
- (a) ii only
- (b) ii and iii only
- (c) i and iv only
- (d) i, ii, iii and iv

2018 12.

- 12. The photographs above show a Class A burette before (left) and after (right) a titration. Use these photographs to determine the titre volume used in this titration.
 - (a) $25.3 \pm 0.05 \,\text{mL}$
 - (b) $25.33 \pm 0.05 \text{ mL}$
 - (c) $25.39 \pm 0.10 \text{ mL}$
 - (d) $26.6 \pm 0.1 \,\text{mL}$

2018 13.

13. The table below shows the volumes added from a burette during a titration.

Titre (mL)					
1	2	3	4	5	6
19.23	19.94	19.98	19.94	20.02	19.94

What value should be used in the titration calculations?

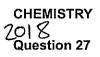
- (a) 19.84 mL
- (b) 19.94 mL
- (c) 19.95 mL
- (d) 19.96 mL

2018

Which of the following sets of equations corresponds correctly to the acid-base theory of the chemist/s who proposed it?

	Chamiatia			
	Chemist/s	Equations		
	Johannes Brønsted and Thomas Lowry	H⁺(aq) + OH⁻(aq) →H ₂ O(ℓ)		
(a)	Humphry Davy	$HNO_3(aq) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + NO_3^-(aq)$		
	Svante Arrhenius	$HC_2H_3O_2(aq) + H_2O(l) \rightleftharpoons C_2H_3O_2(aq) + H_3O(aq)$		
	Johannes Brønsted and Thomas Lowry	$HC_2H_3O_2(aq) + CH_3OH(aq) \Rightarrow CH_3OH_2^+(aq) + C_2H_3O_2^-(aq)$		
(b)	Humphry Davy	$H^{+}(aq) + OH^{-}(aq) \rightarrow H_{2}O(\ell)$		
	Svante Arrhenius	$NH_3(g) + H_2O(\ell) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$		
	Johannes Brønsted and Thomas Lowry	$HC\ell(aq) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + C\ell^-(aq)$		
(c)	Humphry Davy	$H_3O^+(aq) + OH^-(aq) \rightarrow 2 H_2O(\ell)$		
	Svante Arrhenius	$HNO_3(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + NO_3^-(aq)$		
	Johannes Brønsted and Thomas Lowry	$NH_3(aq) + CH_3OH(aq) \rightleftharpoons CH_3O^-(aq) + NH_4^+(aq)$		
(d)	Humphry Davy	2 HCl(aq) + Mg(s) \rightarrow H ₂ (g) + Mg ²⁺ (aq) + 2Cl ⁻ (aq)		
	Svante Arrhenius	NaOH(s) → Na⁺(aq) + OH⁻(aq)		

Section Two: Short answer


35% (79 Marks)

This section has 9 questions. Answer all questions. Write your answers in the spaces provided.

Supplementary pages for planning/continuing your answers to questions are provided at the end of this Question/Answer booklet. If you use these pages to continue an answer, indicate at the original answer where the answer is continued, i.e. give the page number.

Suggested working time: 60 minutes.

Quest	tion 26 (1	0 marks)
Solid o	copper(II) hydroxide is added to excess 0.100 mol L ⁻¹ carbonic acid solution.	
(a)	Write the balanced equation, with appropriate state symbols, for the reaction that place between the copper(II) hydroxide and carbonic acid.	t takes (3 marks)
(b)	Predict all visible changes that would be observed, if any, while the reactants are together and afterwards.	e mixed (3 marks)
(c)	Predict two observations that would be different if excess 0.100 mol L ⁻¹ hydrochl was used instead of the 0.100 mol L ⁻¹ carbonic acid.	oric acid (2 marks)
	One:	
	Two:	
(d)	State two personal safety measures the experimenter should take when conduct these experiments.	ting (2 marks)
	One:	
	Two:	

(12 marks)

Phosphoric acid, H₃PO₄(aq), is a weak, triprotic acid.

Magnesium carbonate, MgCO ₃ (s), is an ingredient of a commonly-used antacid. (b) Other than water, list three species (elements, compounds, ions) that would be for the reacting vessel open to the atmosphere at the completion of the reaction betweexcess solid magnesium carbonate and an aqueous solution of phosphoric acid. One: Two: Three: Sodium hydroxide solution, NaOH(aq), was used in a titration to determine the concentration phosphoric acid. (c) Other than it having too low a molar mass, state two reasons why the concentration the sodium hydroxide solution cannot be reliably determined by weighing out an a of solid sodium hydroxide and dissolving it in a known volume of distilled water. (2) One: Two:	ı d 2 marks)
(b) Other than water, list three species (elements, compounds, ions) that would be for the reacting vessel open to the atmosphere at the completion of the reaction betweexcess solid magnesium carbonate and an aqueous solution of phosphoric acid. One: Two: Three: Sodium hydroxide solution, NaOH(aq), was used in a titration to determine the concentration phosphoric acid. (c) Other than it having too low a molar mass, state two reasons why the concentration the sodium hydroxide solution cannot be reliably determined by weighing out an acof solid sodium hydroxide and dissolving it in a known volume of distilled water. (2) One:	V3-P
(b) Other than water, list three species (elements, compounds, ions) that would be for the reacting vessel open to the atmosphere at the completion of the reaction betweexcess solid magnesium carbonate and an aqueous solution of phosphoric acid. One: Two: Three: Sodium hydroxide solution, NaOH(aq), was used in a titration to determine the concentration phosphoric acid. (c) Other than it having too low a molar mass, state two reasons why the concentration the sodium hydroxide solution cannot be reliably determined by weighing out an acof solid sodium hydroxide and dissolving it in a known volume of distilled water. (2) One:	
the reacting vessel open to the atmosphere at the completion of the reaction betweexcess solid magnesium carbonate and an aqueous solution of phosphoric acid. One: Two: Three: Sodium hydroxide solution, NaOH(aq), was used in a titration to determine the concentration phosphoric acid. (c) Other than it having too low a molar mass, state two reasons why the concentration the sodium hydroxide solution cannot be reliably determined by weighing out an a of solid sodium hydroxide and dissolving it in a known volume of distilled water. (2) One: One:	
Two: Three: Sodium hydroxide solution, NaOH(aq), was used in a titration to determine the concentral phosphoric acid. (c) Other than it having too low a molar mass, state two reasons why the concentration the sodium hydroxide solution cannot be reliably determined by weighing out an a of solid sodium hydroxide and dissolving it in a known volume of distilled water. (2) One: One:	
Three:	
Sodium hydroxide solution, NaOH(aq), was used in a titration to determine the concentral phosphoric acid. (c) Other than it having too low a molar mass, state two reasons why the concentration the sodium hydroxide solution cannot be reliably determined by weighing out an a of solid sodium hydroxide and dissolving it in a known volume of distilled water. (2) One: One:	
phosphoric acid. (c) Other than it having too low a molar mass, state two reasons why the concentrati the sodium hydroxide solution cannot be reliably determined by weighing out an a of solid sodium hydroxide and dissolving it in a known volume of distilled water. (2) One:	
the sodium hydroxide solution cannot be reliably determined by weighing out an a of solid sodium hydroxide and dissolving it in a known volume of distilled water. (2	ation of
	amount
Two:	
Two:	
Two:	

The table below lists some acid-base indicators and the colour that each appears over a pH range.

Indicator	Col		
maicator	Acid	Base	pH range
Universal indicator	red	violet	1.0 – 14.0
Methyl orange	red	yellow	3.2 – 4.4
Bromocresol green	yellow	blue	3.8 – 5.4
Litmus	red	blue	4.5 – 8.3
Methyl red	yellow	red	4.8 – 6.0
Bromothymol blue	yellow	blue	6.0 – 7.6
Phenol red	yellow	red	6.8 – 8.4
Phenolphthalein	colouriess	magenta	8.2 – 10.0

(d)	Select the acid-base indicator from the table above that would be most suitable for the titration between phosphoric acid, H ₃ PO ₄ (aq), and sodium hydroxide solution, NaOH(aq).
	Justify your choice of indicator, including one relevant equation. (5 marks)

A citric acid/dihydrogen citrate ion buffer can be prepared from citric acid, $\rm H_3C_6H_5O_7$ and monosodium citrate, $\rm NaH_2C_6H_5O_7$.

(a)	Write an equation for the buffer system ($H_3C_6H_5O_7/H_2C_6H_5O_7^-$) containing citric $H_3C_6H_5O_7$ and monosodium citrate, $NaH_2C_6H_5O_7$.	acid, (2 marks)
solutio	s that contain equal concentrations of both components are most effective. This land is prepared by mixing 100.0 mL of citric acid solution with 100.0 mL of monoso solution. The citric acid solution, $H_3C_6H_5O_7(aq)$, has a concentration of 0.200 mo	odium
(b)	Calculate the mass of sodium citrate, $NaH_2C_6H_5O_7$, that would need to be dissolated on the most effective buffer solution.	lved in (3 marks)
		NA.

U
0
Ó
~ <u>~</u>
≥
يلا
П
=
_
7
\overline{S}
\supset
꼬
<u>"</u>
⊳
S
7
5
=
\sim
Ċ
-
유
T

If a citric acid buffer was prepared to hydroxide ion at 25.0 °C?	a pri or 3.5, wn	at would be the co	ncentration of the (3 marks

		· · · · · · · · · · · · · · · · · · ·	
Explain why only a small change in amount of sodium hydroxide solution sodium hydroxide solution to a systerefer to the buffer equilibrium in part	n is added, comp em that is not a b	ared to adding a s	imilar amount of
***************************************			P. P
			у,
		and the state of t	
			·
Increasing the concentration of this Explain this statement.	buffer solution wi	Il increase its buffe	ering capacity. (3 marks

DO NOT WRITE IN THIS AREA AS IT WILL BE CUT OFF


2018 Question 31

Arsenic acid, H₃AsO₄(aq), is a weak, triprotic acid that can be produced from the element directly through the reaction with water and ozone, O₃(g). This reaction can be represented by the equation below.

$$2 \text{ As(s)} + 3 \text{ H}_2\text{O}(l) + 5 \text{ O}_3(g) \rightleftharpoons 2 \text{ H}_3\text{AsO}_4(aq) + 5 \text{ O}_2(g)$$

(a) Write the equilibrium constant expression for this reaction. (2 marks)

- The arsenate ion, HAsO₄²⁻(aq), is amphoteric, meaning it can act as an acid and as a (b)
 - (i) With the aid of equations, describe the amphoteric nature of HAsO₄²⁻ in this aqueous solution. (3 marks)

State why an aqueous solution containing HAsO₄²⁻ is found to have a pH>7 at (ii) 25 °C. (1 mark)

2018 Question 32

(4 marks)

Many marine animals have shells that consist mainly of calcium carbonate. These shells are built from dissolved calcium and carbonate ions.

As the amount of atmospheric carbon dioxide increases, more carbon dioxide dissolves in the ocean. There is increasing concern that as more carbon dioxide dissolves, it will be more difficult for calcium carbonate to form.

Use the following equations to explain why an increasing concentration of atmospheric carbon dioxide will decrease the formation of calcium carbonate.

CO ₂ (g)	=	CO ₂ (aq)	Equation 1
$CO_2(aq) + H_2O(l) + CO_3^{2-}(aq)$	=	2 HCO ₃ -(aq)	Equation 2
$Ca^{2+}(aq) + CO_3^{2-}(aq)$			Equation 3

The following information relates to Questions 19, 20 and 21.

A group of Year 12 Chemistry students wanted to know whether increasing ocean acidity increases the rate at which sea shells, CaCO₃, dissolve. They went to a beach to collect seawater and sea shells. In their school laboratory they crushed the sea shells and added 2.00 g of the resulting powder to five clean 250 mL beakers, each of which had been placed on top of its own electronic balance.

They split the seawater into five portions and bubbled carbon dioxide gas into four of the portions for different amounts of time. This gave the students 'natural' seawater plus four seawater samples of different pH. The various seawaters (150 mL portions) were then added to the beakers, with the weight of each beaker and its contents being recorded at timed intervals.

- 19. Which one of the following proposes a suitable hypothesis for the investigation?
 - (a) As the seawater becomes more acidic, the sea shell powder will dissolve faster.
 - (b) The sea shell powder will dissolve fastest in the most acidic seawater.
 - (c) Adding carbon dioxide to seawater changes the pH of the seawater.
 - (d) More of the sea shell powder will dissolve as time progresses.
- 20. Which one of the following pairs of statements on the validity and reliability of the investigation is correct?

	Validity	Reliability
(a)	It is valid because the investigation allows them to determine if seawater pH affects the rate of sea shell dissolution.	It is reliable because the trials were performed in a laboratory.
(b)	It is not valid because the investigation was simulated in a laboratory and not performed in a real ocean.	It is not reliable because only one trial was performed at each different pH value.
(c)	It is not valid because the investigation was simulated in a laboratory and not performed in a real ocean.	It is reliable because trials were performed at five different pH values.
(d)	It is valid because the investigation allows them to determine if seawater pH affects the rate of sea shell dissolution.	Its reliability could be improved by conducting multiple trials at each different pH value.

21. Which of the following reactions is/are likely to be occurring within the beakers during the investigation?

```
(i) CaCO_3(s) + 2H_3O^+(aq) \rightarrow Ca^{2+}(aq) + CO_2(g) + 3H_2O(aq)

(ii) CaCO_3(s) + CO_2(aq) + H_2O(\ell) \rightleftharpoons Ca^{2+}(aq) + 2HCO_3^-(aq)
```

(iii)
$$Ca(OH)_2(s) + 2H_3O+(aq) \xrightarrow{z} = Ca^{2+}(aq) + 4H_2O(q)$$

(iv)
$$HCO_3^{-1}(\overrightarrow{aq}) + H_2O(t)$$
 $\Rightarrow CO_3^{2-1}(\overrightarrow{aq}) + H_3O^{+1}(\overrightarrow{aq})$

- (a) i and ii only
- (b) i, ii and iv only
- (c) iii only
- (d) i, ii, iii and iv

/h\

Section Two: Short answer

35% (106 Marks)

This section has 10 questions. Answer all questions. Write your answers in the spaces provided.

Supplementary pages for planning/continuing your answers to questions are provided at the end of this Question/Answer booklet. If you use these pages to continue an answer, indicate at the original answer where the answer is continued, i.e. give the page number.

Suggested working time: 60 minutes.

Question 26 (9 marks)

Dilute hydrochloric acid, HCl(aq), is added to three labelled test tubes.

- Excess copper metal, Cu(s), is added to the first test tube. **(l)**
- (II) Excess copper(II) oxide, CuO(s), is added to the second test tube.
- (III)Excess copper(II) carbonate, CuCO₃(s), is added to the third test tube.
- Describe the contents of the first and second test tubes once any reactions are complete. (a) (4 marks)

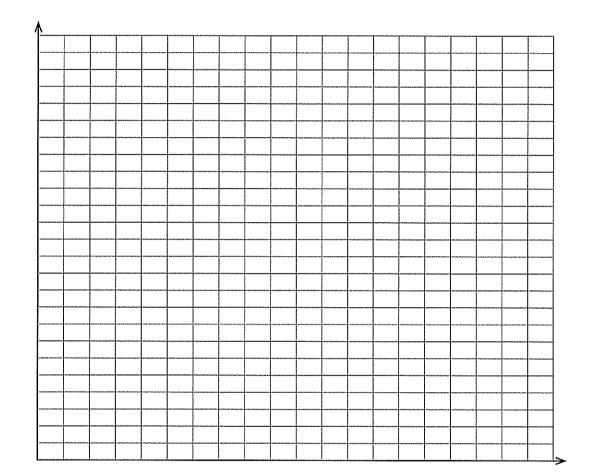
Test Tube	Description
(1)	
(11)	

If the labels of test tubes (II) and (III) became smudged, describe all the observations could be used to distinguish between these test tubes once any reactions are complete (2 m				
				•

CHEMISTRY 2019 Question 27

(13 marks)

Calcium hypochlorite, $Ca(OCl)_2(s)$, is used for the treatment of water in swimming pools and is sold as 'pool chlorine'.

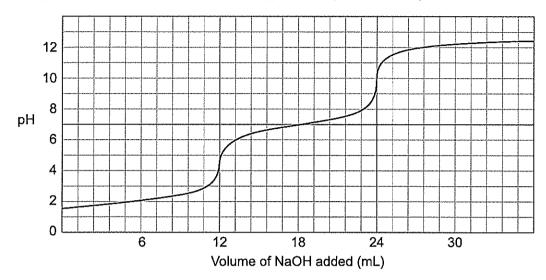

12

(a)		Explain why a basic solution is produced when 'pool chlorine' is dissolved in the pool water. Include an equation in your answer. (4 marks			
			the holds and the second		
	Equation				
	I chemical us d as 'pool acid	sed to counteract the basicity of the pool water is hydrochloric acid, Hed'.	Cł(aq). It		
(b)	State what	happens to the pH of the pool water when 'pool acid' is added to the	pool (3 marks)		
			1		
	Equation		v.		

'Pool chlorine' and 'pool acid' must be stored separately from each other because calcium hypochlorite can react explosively on contact with hydrochloric acid. The equation for this reaction is given below.

$$Ca(OC\ell)_2(s) + 4 HC\ell(aq) \rightarrow CaC\ell_2(aq) + 2 H_2O(\ell) + 2 C\ell_2(g)$$

(c) Sketch a clearly-labelled energy profile diagram illustrating the reaction between the 'pool chlorine' and the 'pool acid'. (6 marks)


A spare grid is provided at the end of this Question/Answer booklet. If you need to use it, cross out this attempt and indicate clearly that you have redrawn it on the spare page.

2019	21	CHEMISTRY
2011		

Question 32 (9 marks)

from a measuring cylinder, 34.0 mL of 0.114 mol L ⁻¹ nitric acid, HNO ₃ (aq), is added to a flask ontaining 44.5 mL of 0.0556 mol L ⁻¹ solution of calcium hydroxide, $Ca(OH)_2(aq)$. Determine the H of the final solution.	: the

Consider the following acid-base titration curve that is produced by the addition of 0.166 mol L-1 sodium hydroxide solution to 20.00 mL of an approximately 0.1 mol L-1 diprotic acid.

(a) (i) Indicate whether the diprotic acid is most likely to be sulfuric acid, H₂SO₄(aq) or sulfurous acid, H₂SO₃(aq), by **circling** your choice below. (1 mark)

Sulfuric acid

Sulfurous acid

(ii) Making reference to the titration curve shown above, give **two** reasons for your answer. (2 marks)

One:

TWO.

See next page

DO NOT WRITE IN THIS AREA AS IT WILL BE CUT OFF

(b) Predict the effect (increase, decrease or no change) on the calculated concentration of the acid for the following two systematic errors that can occur in a titration and justify your choice. (4 marks)

	Systematic Error	Effect on calculated concentration of acid (circle)	Justification
TO SECURITY OF SECURITY SECURI	Only rinsing the pipette with distilled water before use	increase decrease no change	
II	Using an indicator with an end point of pH = 4.5	increase decrease no change	

(c)	State one reason why these errors are classified a	as systematic errors rather than random
	errors.	(1 mark)

End of Section Two

Section Three: Extended answer

40% (109 Marks)

This section contains **six** questions. You must answer **all** questions. Write your answers in the spaces provided.

Where questions require an explanation and/or description, marks are awarded for the relevant chemical content and also for coherence and clarity of expression. Lists or dot points are unlikely to gain full marks.

Final answers to calculations should be expressed to the appropriate number of significant figures and include appropriate units where applicable.

Supplementary pages for planning/continuing your answers to questions are provided at the end of this Question/Answer booklet. If you use these pages to continue an answer, indicate at the original answer where the answer is continued, i.e. give the page number.

Suggested working time: 70 minutes.

Question 36

(20 marks)

The ideal pH of human blood is 7.4. If the pH of a person's blood varies too much from this value, a serious condition can develop. If the pH is too low, it is called acidosis; if the pH is too high, it is called alkalosis. Death may occur if the pH drops below 6.8 or rises above 7.8.

One buffer system for maintaining acid-base balance in blood is the carbonic acid-hydrogenearbonate buffer.

During exercise, the muscles need more oxygen to produce energy. They produce carbon dioxide, CO₂, and hydronium ions, H₃O⁺, which move from the muscles to the blood.

The relevant equilibrium equations for the carbonic acid-hydrogencarbonate buffer system are shown as follows.

Equation 1
$$H_3O^+(aq) + HCO_3^-(aq) \rightleftharpoons H_2CO_3(aq) + H_2O(l)$$

(a) Identify the **two** conjugate acid-base pairs on Equation 1 above, indicating clearly which is the acid and which is the base in each pairing. (2 marks)

(b)	Write the equilibrium constant expression for Equation 1.	(2 marks)	

Carbonic acid further reacts to form water and carbon dioxide as shown in Equation 2.

Equation 2 $H_2CO_3(aq) \Rightarrow H_2O(l) + CO_2(aq)$

- (c) Combine Equations 1 and 2, to create an overall equation that shows the relationship between $HCO_3^-(aq)$ and $CO_2(aq)$. (2 marks)
- (d) Identify the effect on the blood's pH when each of the following components are removed: carbon dioxide and hydrogencarbonate ions. (2 marks)

Component removed	(0	Effect on pH ircle your answe	er)
carbon dioxide	increase	decrease	no effect
hydrogencarbonate ions	increase	decrease	no effect

CHEMISTRY	
2019	
Question 36 (continued)	

The buffering capacity of the carbonic acid-hydrogencarbonate is greatest when the pH is between 5.1 and 7.1.

30

∍)	State two conditions in terms of concentration that are necessary for this buffering capacity to be optimal. (2 marks)
	One:
	Two:
	in the pH of the blood is too high, the kidneys can remove hydrogencarbonate ions, HCO_3^- , the blood.
	Use Le Châtelier's Principle to demonstrate that the kidneys' action can help to prevent excessively high blood pH. (3 marks)

DO NOT WRITE IN THIS AREA AS IT WILL BE CUT OFF

(h)

When inhaling, oxygen is taken into the lungs and transferred to the blood; when exhaling, carbon dioxide is expelled.

During hyperventilation (very rapid and deep breathing) more carbon dioxide is being expelled from the body than it can produce. This upsets the oxygen/carbon dioxide balance and can cause dizziness and fainting. Hyperventilating results in lowering the carbon dioxide concentration in the blood, which can affect the pH of the blood.

The equation shown below illustrates the formation of hydronium ions within the blood system.

$$2 H_2O(l) + CO_2(aq) \Rightarrow H_3O^+(aq) + HCO_3^-(aq)$$

A first-aid treatment for hyperventilation is the 'paper-bag treatment' whereby the patient breathes into a paper bag and so breathes back in the expelled breath, which contains a higher concentration of carbon dioxide.

(g)	State the effect of the 'paper-bag treatment' on the pH of the blood and explain an effective treatment for hyperventilation.		

Another contributor to a potential imbalance of blood pH is the formation of lactic acid. The chemical name for lactic acid is 2-hydroxypropanoic acid, $C_3H_6O_3$.

Draw the structural formula for lactic acid with all its functional groups circled and

labelled.	(4 marks)

1	

(13 marks)

Herbicides are chemicals that kill plants, including weeds. The label of a commercially-available herbicide concentrate is shown below.

Generic Weed Killer

Fast, effective, easy to apply. Recommended by professional gardeners.

SUPER CONCENTRATE

Ingredients:

For copyright reasons this image cannot be reproduced in the online version of this document, but may be viewed at the link listed on the acknowledgements page.

155 g/L \pm 5.00% sodium chloride 295 g/L \pm 5.00% acetic (ethanoic) acid

A chemist was given the task of verifying the concentrations of sodium chloride and acetic (ethanoic) acid stated for this herbicide.

The sodium chloride content of the herbicide was analysed. It was found to be consistent within the tolerance of \pm 5.00% of the stated concentration. The chemist then performed a series of titrations with sodium hydroxide to measure the acetic (ethanoic) acid concentration.

The herbicide solution used in the titrations was prepared by pipetting 5.00 mL of the concentrate into a 250.0 mL volumetric flask. The solution in the flask was then made up to the mark with distilled water.

A 20.00 mL sample of the diluted herbicide was pipetted into a conical flask and a few drops of a suitable indicator were added. This solution was then titrated with standardised 0.0947 mol L⁻¹ NaOH solution.

After an initial 'rough titration', a further four titrations were performed. The results are shown in the following table.

(a) Complete the table and determine the average titre.

(2 marks)

Titration number	Burette readings (mL)		
	Initial	Final	Titre
1	1.28	20.75	
2	20.75	40.19	
3	1.48	21.82	
4	21.82	41.21	
Average titre			

See next page

DO NOT WRITE IN THIS AREA AS IT WILL BE CUT OFF

(b) Identify with what solution each of these pieces of glassware should be rinsed prior to their use in these titrations. (3 marks)

Glassware item	Rinse solution
5.00 mL pipette	
20.00 mL pipette	
250.0 mL volumetric flask	

umerence of ± 5.0	JU /0 IS CUITSIDELEC	a acceptable. S	now all working	s and reasoning. (8

	wheels and the second s			

t				

Which of the following classifies the given acids as monoprotic or polyprotic?

Monoprotic		Polyprotic
(a)	HCl	CH ₃ COOH
(b)	CH ₃ CH ₂ COOH	H₂SO₄
(c)	CH₃COOH	CH₃CH₂COOH
(d)	H ₂ SO ₄	HCŧ

CHEMISTRY

Which of the following statements about pure water are correct?

- Pure water is a weak electrolyte that undergoes self-ionisation.
- (ii) The equilibrium constant for the ionisation of pure water at 25 °C is 1.00×10^{-14} .
- (iii) Pure water ionises completely at 25 °C, hence [H⁺] = [OH⁻].
- The ionisation of pure water produces twice as many hydrogen ions as hydroxide (iv) ions.
- i and ii only (a)
- (b) ii and iii only
- iii and iv only (c)
- (d) i, ii, iii and iv

CHEMISTRY

8

The reaction of aniline (C₆H₅NH₂) with water is an equilibrium process:

$$C_6H_5NH_2(\ell) + H_2O(\ell) \rightleftharpoons C_6H_5NH^-(aq) + H_3O^+(aq)$$

A conjugate acid-base pair in this process is

- (a) C₆H₅NH⁻ and H₂O
- $C_6^{\circ}H_5^{\circ}NH_2$ and $C_6^{\circ}H_5^{\circ}NH^ C_6H_5^{\circ}NH^-$ and $H_3^{\circ}O^+$ $H_3^{\circ}O^+$ and $C_6^{\circ}H_5^{\circ}NH_2^-$ (b)
- (c)
- (d)

2020

A chemist performed an acid-base titration. The acid was in a burette and a pipette was used to deliver a known quantity of the base into a conical flask. Which of the following gives the final rinse solution for each of these pieces of equipment?

	Final rinse solution			
	Burette	Pipette	Conical flask	
)	acid	water	base	
)	acid	base	water	
) [water	base	water	
)	water	water	base	

End of Section One

See next page

2020

Acid-base indicators

- (a) are oxidising or reducing agents.
- (b) change colour at a specific pH value.
- (c) are strong acids or bases.
- (d) are weak acids or bases.

2020 18.

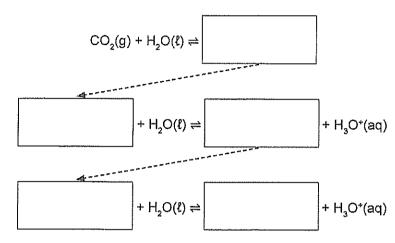
A chemist prepares solutions of nitrous acid and hydrocyanic acid that have the same concentration.

The Ka values of these acids are:

- nitrous acid (HNO₂) is 4.6 x 10⁻⁴
- hydrocyanic acid (HCN) is 6.17 x 10⁻¹⁰.

Which of these two acids is the stronger and which has the higher pH?

-	Stronger acid	Higher pH
(a)	nitrous acid	nitrous acid
(b)	nitrous acid hydrocyanic	
(c)	hydrocyanic acid	hydrocyanic acid
(d)	hydrocyanic acid	nitrous acid


See next page

DO NOT WRITE IN THIS AREA AS IT WILL BE CUT OFF

(9 marks)

The amount of carbon dioxide in the Earth's atmosphere is increasing, leading to more carbon dioxide dissolving in the oceans and hence ocean acidification.

(a) Complete the following sequence of equations to show what happens to carbon dioxide when it dissolves in water. (3 marks)

(b) Other than death, state **two** consequences of the above sequence of equations on marine organisms with shells. (2 marks)

One:	

	8	
d C	ering.	
٠.,		
	5	
	Ì	
	YRITE RITE	
	=	
	<u>~</u>	
	ヹ	
	S	
	卆	
	Ŕ	
	$\stackrel{\frown}{\sim}$	
	S	
	二	
	5	
	Ē	
	BE	
	$\overline{}$	
	Ĭ	
	O	
	1	

Use Le Châtelier's Principle and the sequence of equations in part (a) to predict with might happen, in relation to ocean acidification, if the United Nations Kyoto Protocol	col is
discarded. Explain your reasoning.	4 mark

(17 marks)

A student standardised an approximately 0.1 mol L-1 sodium hydroxide solution with a standard 0.0958 mol L-1 hydrochloric acid solution. The student pipetted 20.00 mL of the sodium hydroxide solution into a conical flask, added 2 drops of indicator and titrated to the end point with the hydrochloric acid. Five titrations were performed.

(a) Below is a table of the student's results. Determine the average titre.

(1 mark)

Titration		Burette readings (mL)	
number	Initial	Final	Titre
Rough	1.35	22.45	21.10
1	21.45	41.50	20.05
2	3.50	23.65	20.15
3	23.65	43.05	19.40
4	2.75	22.85	20.10
		Average titre	

b)	Show that the concentration of the sodium hydroxide solution is 0.0963 mol L ⁻¹ , correcthree significant figures. (3 mag)	

The student used the standardised sodium hydroxide solution to determine the percentage by mass of phosphoric acid (H_3PO_4) in a commercial brand of rust remover.

The student weighed a sample of the rust remover into a small beaker and then transferred it to a 250.0 mL volumetric flask. The beaker was rinsed several times with distilled water and each time the wash water was added to the volumetric flask. The volumetric flask was then made up to the mark with more distilled water. The student titrated 10.00 mL aliquots of the diluted rust remover with the standardised sodium hydroxide solution.

The student's results were as follows:

TIMBITE IN THIS ADTA AS IT WHILL DIT SHIT

- mass of undiluted rust remover = 10.05 g
- average titre of standardised sodium hydroxide solution = 24.45 mL.

that the rust reliior	rer contains no or	ns no other substances that react with sodium hyd		
		Ad		

				•
			······································	
			(**************************************	

The state of the s				
***************************************		(V)		
/	the state of the s			

The following table provides some information about three different acid-base indicators.

Indicator	pH range	Acid colour	Base colour
methyl orange	3.2 – 4.4	red	yellow
bromothymol blue	6.0 – 7.6	yellow	blue
phenolphthalein	8.3 – 10.0	colouriess	pink

(d)	Which of these indicators should the student use when titrating phosphoric acid sodium hydroxide? Justify your choice with the aid of a relevant balanced chen	nical
	equation.	(5 marks)
		M. W. C.
		· · · · · · · · · · · · · · · · · · ·

CHEMISTRY

Consider the acids listed in the following table.

Name	Formula	K _a (25 °C)
bromoacetic acid	CH₂BrCOOH	1.38 × 10⁻³
dibromoacetic acid	CHBr ₂ COOH	3.31 × 10 ⁻²
tribromoacetic acid	CBr ₃ COOH	1.91 × 10 ⁻¹

Which of the following identifies the strongest acid and classifies it correctly as monoprotic, diprotic or triprotic?

	Strongest acid	Classification
(a)	bromoacetic acid	monoprotic
(b)	dibromoacetic acid	diprotic
(c)	tribromoacetic acid	monoprotic
(d)	tribromoacetic acid	triprotic

2021

8. Which of the following equation/s demonstrate/s the Arrhenius model of acids and bases?

- $HCl(aq) \rightarrow H^{\dagger}(aq) + Cl^{\dagger}(aq)$ (i)
- $CH_3COOH(aq) + H_2O(\ell) \rightarrow CH_3COO^{-}(aq) + H_3O^{+}(aq)$ (ii)
- (iii) $KOH(aq) \rightarrow K^{+}(aq) + OH^{-}(aq)$
- $H_2PO_3^-(aq) + H_3O^+(aq) \rightarrow H_2O(\ell) + H_2PO_{\ell}(aq)$ (iv)
- i, ii, iii and iv (a)
- (b) i only
- (c) ii and iii only
- i and iii only (d)

The net ionic equation for the predominant hydrolysis reaction occurring in a 1.00 mol L-1 potassium hydrogensulfate solution is:

- (a) $KHSO_4(aq) + H_2O(\ell) \rightleftharpoons K^+(aq) + H_2SO_4(aq) + OH^-(aq)$
- $K^{+}(aq) + HSO_{4}^{-}(aq) \rightleftharpoons K^{+}(aq) + H^{+}(aq) + SO_{4}^{2-}(aq)$ (b)
- (c)
- $HSO_4^-(aq) + H_2O(\ell) \rightleftharpoons H_2SO_4(aq) + OH^-(aq)$ $HSO_4^-(aq) + H_2O(\ell) \rightleftharpoons SO_4^{2-}(aq) + H_3O^+(aq)$ (d)

2021

Identify a conjugate acid-base pair in the reaction represented by the following equation:

$$H_2PO_4^-(aq) + CH_3NH_2(aq) \rightleftharpoons CH_3NH_3^+(aq) + HPO_4^2-(aq)$$

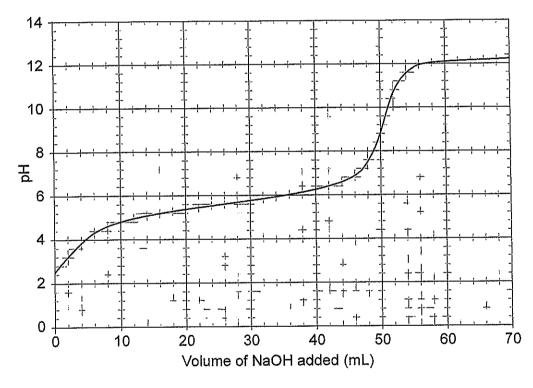
- H₂PO₄-(aq) and CH₃NH₂(aq) (a)
- $CH_3NH_3^+(aq)$ and $HPO_4^{2-}(aq)$ (b)
- H_2PO_4 (aq) and HPO_4^2 (aq) (c)
- $H_2PO_4^-(aq)$ and $CH_3NH_3^+(aq)$ (d)

CHEMISTRY

Consider the following pH values for a range of substances.

Based on these pH values, which one of the following statements about the concentration of hydronium ions is true?

- It is 1000 times greater in sea water than in bathroom cleaner. (a)
- It is twice as great in beer as it is in lemon juice. (b)
- It is three times greater in beer than in hair straightener. (c)
- It is 1 000 000 times greater in hair straightener than in milk. (d)
- Which of the following processes does not contribute to the building of weaker seashells through ocean acidification?
 - (a)
 - $\begin{array}{l} HCO_{3}^{-}(aq) + H_{2}O(\ell) \rightleftharpoons CO_{3}^{2-}(aq) + H_{3}O^{+}(aq) \\ 2 \ H^{+}(aq) + CaCO_{3}(s) \rightleftharpoons Ca^{2+}(aq) + CO_{2}(aq) + H_{2}O(\ell) \end{array}$ (b)
 - (c)
 - $CO_2(g) + H_2O(\ell) \rightleftharpoons H_2CO_3(aq)$ $H_2CO_3(aq) + H_2O(\ell) \rightleftharpoons HCO_3^-(aq) + H_3O^+(aq)$ (d)
- A chemist performed a series of titrations and published the results in a scientific journal. From the point of view of the chemist, the titration data is
 - primary. (a)
 - secondary. (b)
 - personal. (c)
 - investigative. (d)
- An example of a random error in a titration is
 - reading solution volumes to the bottom of the meniscus. (a)
 - a gas bubble in the burette tap that comes out during a titration. (b)
 - calculating the concentration of the primary standard incorrectly. (c)
 - rinsing down the sides of the conical flasks during titrations. (d)


See next page

(9 marks)

Benzoic acid (C_6H_5COOH) is a weak acid. Its structural formula is shown below.

Benzoic acid has a range of uses, including the manufacture of dyes, perfumes and insect repellents. The benzoic acid content of these products can be determined by titration with sodium hydroxide. The salt produced in the titration reaction is sodium benzoate, C_6H_5COONa .

The following graph shows a typical acid-base titration curve for benzoic acid and sodium hydroxide.

(a) Which of the indicators listed in the following table would be most suitable for use in this titration? With reference to the above titration curve, explain your choice. (3 marks)

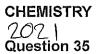
Name of Indicator	pH Range
Bromocresol green	3.8 – 5.4
Azolitmin	4.5 – 8.3
Cresolphthalein	8.2 – 9.8
Indigo carmine	11.4 – 13.0

Buffering is observed during this titration. (i) Circle the region on the titration curve	
(i) Circle the region on the titration curve	
(i) Circle the region on the titration curve	
(i) Circle the region on the titration curve	
(i) Circle the region on the titration curve	
(i) Circle the region on the titration curve	
(i) Circle the region on the titration curve	
(i) Circle the region on the titration curve	
(i) Circle the region on the titration curve	
occurs.	e on page 14 to show where the buffer)
(ii) Define the term buffering and explair the region that you circled in part (b)(n why it occurs during this titration in (i). Include an equation to support your
explanation.	(5

CHEMISTRY

202 \ Question 29

(7 marks)


Water can self-ionise, as shown by the following equation:

$$H_2O(l) \rightleftharpoons H^+(aq) + OH^-(aq)$$

The reaction equilibrium and the pH of water are both affected by changes in temperature. The data in the following table show how changing the temperature affects the pH of pure water.

Temperature (°C)	pH of water
0	7.47
25	7.00
50	6.63
75	6.35

whether the self-ionisation of water is exothermic or endothermic. Calculations are not required. (5 mark
Calculate the H $^{+}$ (aq) and OH $^{-}$ (aq) concentrations of pure water at 100.0 °C given that K_{w} is equal to 5.13 × 10 $^{-15}$ at that temperature. (2 ma

(12 marks)

Smoking is hazardous to a person's health and one option to help quit smoking is the use of nicotine patches. These patches, when placed on the skin, release small amounts of nicotine with the aim of reducing cigarette craving.

The nicotine content of these patches can be determined by titration. The titrating solution is prepared by mixing perchloric acid ($HClO_4$) with glacial acetic acid, resulting in the following equilibrium:

$$HClO_4 + CH_3COOH \Rightarrow CH_3COOH_2^+ + ClO_4^-$$

The species that reacts with nicotine during the titration is $CH_3COOH_2^+$. 'Glacial' means that the acetic acid does not contain any water.

The perchloric acid/acetic acid solution must be standardised before use and this can be done by titrating it with a solution made from a primary standard.

(a)	Other than possessing a relatively high molar mass, state two characteristics a substance for it to be used as a primary standard.	required of (2 marks)
	One:	
	Two:	

A brand of nicotine patches comes in dose sizes of 7 mg, 14 mg and 21 mg. A manufacturing error produced a batch of unlabelled boxes of patches. A chemist was given the task of identifying the dose size so that the boxes could be accurately labelled and then sold.

The chemist took one of the boxes and extracted all the nicotine from the 14 patches it contained. The nicotine extract was then made up to a total of 100.0 mL using a suitable solvent. Aliquots of the resulting solution (20.0 mL) were then titrated with standardised 0.0483 mol L⁻¹ perchloric acid/acetic acid solution, requiring an average of 15.11 mL to reach the end point.

(b) Complete the following table by writing the name of the most suitable piece of equipment to use for each task. (3 marks)

Task	Piece of equipment to use
Making exactly 100.0 mL of nicotine-containing solution	
Measuring a 20.0 mL aliquot of the nicotine-containing solution	
Adding the perchloric acid/acetic acid solution to the nicotine-containing solution	

(c) Use the chemist's titration data to identify the nicotine dosage of the patches in the unlabelled boxes. Show all of your working.

The molecular formula of nicotine is $C_{10}H_{14}N_2$ and the titration reaction is:

	$C_{10}H_{14}N_2 + 2 CH_3COOH_2^+ \rightarrow C_{10}H_{16}N_2^{2+} + 2 CH_3COOH$	(7 marks)
		<u> </u>
v Althouse Pri		

6000 (A. C.)		- 14 (Larry) Cod
		App .
, , , , , , , , , , , , , , , , , , ,		